diff options
Diffstat (limited to 'vendor/github.com/soniakeys/graph/sssp.go')
| -rw-r--r-- | vendor/github.com/soniakeys/graph/sssp.go | 881 |
1 files changed, 881 insertions, 0 deletions
diff --git a/vendor/github.com/soniakeys/graph/sssp.go b/vendor/github.com/soniakeys/graph/sssp.go new file mode 100644 index 0000000..32cc192 --- /dev/null +++ b/vendor/github.com/soniakeys/graph/sssp.go @@ -0,0 +1,881 @@ +// Copyright 2013 Sonia Keys +// License MIT: http://opensource.org/licenses/MIT + +package graph + +import ( + "container/heap" + "fmt" + "math" +) + +// rNode holds data for a "reached" node +type rNode struct { + nx NI + state int8 // state constants defined below + f float64 // "g+h", path dist + heuristic estimate + fx int // heap.Fix index +} + +// for rNode.state +const ( + unreached = 0 + reached = 1 + open = 1 + closed = 2 +) + +type openHeap []*rNode + +// A Heuristic is defined on a specific end node. The function +// returns an estimate of the path distance from node argument +// "from" to the end node. Two subclasses of heuristics are "admissible" +// and "monotonic." +// +// Admissible means the value returned is guaranteed to be less than or +// equal to the actual shortest path distance from the node to end. +// +// An admissible estimate may further be monotonic. +// Monotonic means that for any neighboring nodes A and B with half arc aB +// leading from A to B, and for heuristic h defined on some end node, then +// h(A) <= aB.ArcWeight + h(B). +// +// See AStarA for additional notes on implementing heuristic functions for +// AStar search methods. +type Heuristic func(from NI) float64 + +// Admissible returns true if heuristic h is admissible on graph g relative to +// the given end node. +// +// If h is inadmissible, the string result describes a counter example. +func (h Heuristic) Admissible(g LabeledAdjacencyList, w WeightFunc, end NI) (bool, string) { + // invert graph + inv := make(LabeledAdjacencyList, len(g)) + for from, nbs := range g { + for _, nb := range nbs { + inv[nb.To] = append(inv[nb.To], + Half{To: NI(from), Label: nb.Label}) + } + } + // run dijkstra + // Dijkstra.AllPaths takes a start node but after inverting the graph + // argument end now represents the start node of the inverted graph. + f, dist, _ := inv.Dijkstra(end, -1, w) + // compare h to found shortest paths + for n := range inv { + if f.Paths[n].Len == 0 { + continue // no path, any heuristic estimate is fine. + } + if !(h(NI(n)) <= dist[n]) { + return false, fmt.Sprintf("h(%d) = %g, "+ + "required to be <= found shortest path (%g)", + n, h(NI(n)), dist[n]) + } + } + return true, "" +} + +// Monotonic returns true if heuristic h is monotonic on weighted graph g. +// +// If h is non-monotonic, the string result describes a counter example. +func (h Heuristic) Monotonic(g LabeledAdjacencyList, w WeightFunc) (bool, string) { + // precompute + hv := make([]float64, len(g)) + for n := range g { + hv[n] = h(NI(n)) + } + // iterate over all edges + for from, nbs := range g { + for _, nb := range nbs { + arcWeight := w(nb.Label) + if !(hv[from] <= arcWeight+hv[nb.To]) { + return false, fmt.Sprintf("h(%d) = %g, "+ + "required to be <= arc weight + h(%d) (= %g + %g = %g)", + from, hv[from], + nb.To, arcWeight, hv[nb.To], arcWeight+hv[nb.To]) + } + } + } + return true, "" +} + +// AStarA finds a path between two nodes. +// +// AStarA implements both algorithm A and algorithm A*. The difference in the +// two algorithms is strictly in the heuristic estimate returned by argument h. +// If h is an "admissible" heuristic estimate, then the algorithm is termed A*, +// otherwise it is algorithm A. +// +// Like Dijkstra's algorithm, AStarA with an admissible heuristic finds the +// shortest path between start and end. AStarA generally runs faster than +// Dijkstra though, by using the heuristic distance estimate. +// +// AStarA with an inadmissible heuristic becomes algorithm A. Algorithm A +// will find a path, but it is not guaranteed to be the shortest path. +// The heuristic still guides the search however, so a nearly admissible +// heuristic is likely to find a very good path, if not the best. Quality +// of the path returned degrades gracefully with the quality of the heuristic. +// +// The heuristic function h should ideally be fairly inexpensive. AStarA +// may call it more than once for the same node, especially as graph density +// increases. In some cases it may be worth the effort to memoize or +// precompute values. +// +// Argument g is the graph to be searched, with arc weights returned by w. +// As usual for AStar, arc weights must be non-negative. +// Graphs may be directed or undirected. +// +// If AStarA finds a path it returns a FromList encoding the path, the arc +// labels for path nodes, the total path distance, and ok = true. +// Otherwise it returns ok = false. +func (g LabeledAdjacencyList) AStarA(w WeightFunc, start, end NI, h Heuristic) (f FromList, labels []LI, dist float64, ok bool) { + // NOTE: AStarM is largely duplicate code. + + f = NewFromList(len(g)) + labels = make([]LI, len(g)) + d := make([]float64, len(g)) + r := make([]rNode, len(g)) + for i := range r { + r[i].nx = NI(i) + } + // start node is reached initially + cr := &r[start] + cr.state = reached + cr.f = h(start) // total path estimate is estimate from start + rp := f.Paths + rp[start] = PathEnd{Len: 1, From: -1} // path length at start is 1 node + // oh is a heap of nodes "open" for exploration. nodes go on the heap + // when they get an initial or new "g" path distance, and therefore a + // new "f" which serves as priority for exploration. + oh := openHeap{cr} + for len(oh) > 0 { + bestPath := heap.Pop(&oh).(*rNode) + bestNode := bestPath.nx + if bestNode == end { + return f, labels, d[end], true + } + bp := &rp[bestNode] + nextLen := bp.Len + 1 + for _, nb := range g[bestNode] { + alt := &r[nb.To] + ap := &rp[alt.nx] + // "g" path distance from start + g := d[bestNode] + w(nb.Label) + if alt.state == reached { + if g > d[nb.To] { + // candidate path to nb is longer than some alternate path + continue + } + if g == d[nb.To] && nextLen >= ap.Len { + // candidate path has identical length of some alternate + // path but it takes no fewer hops. + continue + } + // cool, we found a better way to get to this node. + // record new path data for this node and + // update alt with new data and make sure it's on the heap. + *ap = PathEnd{From: bestNode, Len: nextLen} + labels[nb.To] = nb.Label + d[nb.To] = g + alt.f = g + h(nb.To) + if alt.fx < 0 { + heap.Push(&oh, alt) + } else { + heap.Fix(&oh, alt.fx) + } + } else { + // bestNode being reached for the first time. + *ap = PathEnd{From: bestNode, Len: nextLen} + labels[nb.To] = nb.Label + d[nb.To] = g + alt.f = g + h(nb.To) + alt.state = reached + heap.Push(&oh, alt) // and it's now open for exploration + } + } + } + return // no path +} + +// AStarAPath finds a shortest path using the AStarA algorithm. +// +// This is a convenience method with a simpler result than the AStarA method. +// See documentation on the AStarA method. +// +// If a path is found, the non-nil node path is returned with the total path +// distance. Otherwise the returned path will be nil. +func (g LabeledAdjacencyList) AStarAPath(start, end NI, h Heuristic, w WeightFunc) ([]NI, float64) { + f, _, d, _ := g.AStarA(w, start, end, h) + return f.PathTo(end, nil), d +} + +// AStarM is AStarA optimized for monotonic heuristic estimates. +// +// Note that this function requires a monotonic heuristic. Results will +// not be meaningful if argument h is non-monotonic. +// +// See AStarA for general usage. See Heuristic for notes on monotonicity. +func (g LabeledAdjacencyList) AStarM(w WeightFunc, start, end NI, h Heuristic) (f FromList, labels []LI, dist float64, ok bool) { + // NOTE: AStarM is largely code duplicated from AStarA. + // Differences are noted in comments in this method. + + f = NewFromList(len(g)) + labels = make([]LI, len(g)) + d := make([]float64, len(g)) + r := make([]rNode, len(g)) + for i := range r { + r[i].nx = NI(i) + } + cr := &r[start] + + // difference from AStarA: + // instead of a bit to mark a reached node, there are two states, + // open and closed. open marks nodes "open" for exploration. + // nodes are marked open as they are reached, then marked + // closed as they are found to be on the best path. + cr.state = open + + cr.f = h(start) + rp := f.Paths + rp[start] = PathEnd{Len: 1, From: -1} + oh := openHeap{cr} + for len(oh) > 0 { + bestPath := heap.Pop(&oh).(*rNode) + bestNode := bestPath.nx + if bestNode == end { + return f, labels, d[end], true + } + + // difference from AStarA: + // move nodes to closed list as they are found to be best so far. + bestPath.state = closed + + bp := &rp[bestNode] + nextLen := bp.Len + 1 + for _, nb := range g[bestNode] { + alt := &r[nb.To] + + // difference from AStarA: + // Monotonicity means that f cannot be improved. + if alt.state == closed { + continue + } + + ap := &rp[alt.nx] + g := d[bestNode] + w(nb.Label) + + // difference from AStarA: + // test for open state, not just reached + if alt.state == open { + + if g > d[nb.To] { + continue + } + if g == d[nb.To] && nextLen >= ap.Len { + continue + } + *ap = PathEnd{From: bestNode, Len: nextLen} + labels[nb.To] = nb.Label + d[nb.To] = g + alt.f = g + h(nb.To) + + // difference from AStarA: + // we know alt was on the heap because we found it marked open + heap.Fix(&oh, alt.fx) + } else { + *ap = PathEnd{From: bestNode, Len: nextLen} + labels[nb.To] = nb.Label + d[nb.To] = g + alt.f = g + h(nb.To) + + // difference from AStarA: + // nodes are opened when first reached + alt.state = open + heap.Push(&oh, alt) + } + } + } + return +} + +// AStarMPath finds a shortest path using the AStarM algorithm. +// +// This is a convenience method with a simpler result than the AStarM method. +// See documentation on the AStarM and AStarA methods. +// +// If a path is found, the non-nil node path is returned with the total path +// distance. Otherwise the returned path will be nil. +func (g LabeledAdjacencyList) AStarMPath(start, end NI, h Heuristic, w WeightFunc) ([]NI, float64) { + f, _, d, _ := g.AStarM(w, start, end, h) + return f.PathTo(end, nil), d +} + +// implement container/heap +func (h openHeap) Len() int { return len(h) } +func (h openHeap) Less(i, j int) bool { return h[i].f < h[j].f } +func (h openHeap) Swap(i, j int) { + h[i], h[j] = h[j], h[i] + h[i].fx = i + h[j].fx = j +} +func (p *openHeap) Push(x interface{}) { + h := *p + fx := len(h) + h = append(h, x.(*rNode)) + h[fx].fx = fx + *p = h +} + +func (p *openHeap) Pop() interface{} { + h := *p + last := len(h) - 1 + *p = h[:last] + h[last].fx = -1 + return h[last] +} + +// BellmanFord finds shortest paths from a start node in a weighted directed +// graph using the Bellman-Ford-Moore algorithm. +// +// WeightFunc w must translate arc labels to arc weights. +// Negative arc weights are allowed but not negative cycles. +// Loops and parallel arcs are allowed. +// +// If the algorithm completes without encountering a negative cycle the method +// returns shortest paths encoded in a FromList, path distances indexed by +// node, and return value end = -1. +// +// If it encounters a negative cycle reachable from start it returns end >= 0. +// In this case the cycle can be obtained by calling f.BellmanFordCycle(end). +// +// Negative cycles are only detected when reachable from start. A negative +// cycle not reachable from start will not prevent the algorithm from finding +// shortest paths from start. +// +// See also NegativeCycle to find a cycle anywhere in the graph, and see +// HasNegativeCycle for lighter-weight negative cycle detection, +func (g LabeledDirected) BellmanFord(w WeightFunc, start NI) (f FromList, dist []float64, end NI) { + a := g.LabeledAdjacencyList + f = NewFromList(len(a)) + dist = make([]float64, len(a)) + inf := math.Inf(1) + for i := range dist { + dist[i] = inf + } + rp := f.Paths + rp[start] = PathEnd{Len: 1, From: -1} + dist[start] = 0 + for _ = range a[1:] { + imp := false + for from, nbs := range a { + fp := &rp[from] + d1 := dist[from] + for _, nb := range nbs { + d2 := d1 + w(nb.Label) + to := &rp[nb.To] + // TODO improve to break ties + if fp.Len > 0 && d2 < dist[nb.To] { + *to = PathEnd{From: NI(from), Len: fp.Len + 1} + dist[nb.To] = d2 + imp = true + } + } + } + if !imp { + break + } + } + for from, nbs := range a { + d1 := dist[from] + for _, nb := range nbs { + if d1+w(nb.Label) < dist[nb.To] { + // return nb as end of a path with negative cycle at root + return f, dist, NI(from) + } + } + } + return f, dist, -1 +} + +// BellmanFordCycle decodes a negative cycle detected by BellmanFord. +// +// Receiver f and argument end must be results returned from BellmanFord. +func (f FromList) BellmanFordCycle(end NI) (c []NI) { + p := f.Paths + var b Bits + for b.Bit(end) == 0 { + b.SetBit(end, 1) + end = p[end].From + } + for b.Bit(end) == 1 { + c = append(c, end) + b.SetBit(end, 0) + end = p[end].From + } + for i, j := 0, len(c)-1; i < j; i, j = i+1, j-1 { + c[i], c[j] = c[j], c[i] + } + return +} + +// HasNegativeCycle returns true if the graph contains any negative cycle. +// +// HasNegativeCycle uses a Bellman-Ford-like algorithm, but finds negative +// cycles anywhere in the graph. Also path information is not computed, +// reducing memory use somewhat compared to BellmanFord. +// +// See also NegativeCycle to obtain the cycle, and see BellmanFord for +// single source shortest path searches. +func (g LabeledDirected) HasNegativeCycle(w WeightFunc) bool { + a := g.LabeledAdjacencyList + dist := make([]float64, len(a)) + for _ = range a[1:] { + imp := false + for from, nbs := range a { + d1 := dist[from] + for _, nb := range nbs { + d2 := d1 + w(nb.Label) + if d2 < dist[nb.To] { + dist[nb.To] = d2 + imp = true + } + } + } + if !imp { + break + } + } + for from, nbs := range a { + d1 := dist[from] + for _, nb := range nbs { + if d1+w(nb.Label) < dist[nb.To] { + return true // negative cycle + } + } + } + return false +} + +// NegativeCycle finds a negative cycle if one exists. +// +// NegativeCycle uses a Bellman-Ford-like algorithm, but finds negative +// cycles anywhere in the graph. If a negative cycle exists, one will be +// returned. The result is nil if no negative cycle exists. +// +// See also HasNegativeCycle for lighter-weight cycle detection, and see +// BellmanFord for single source shortest paths. +func (g LabeledDirected) NegativeCycle(w WeightFunc) (c []NI) { + a := g.LabeledAdjacencyList + f := NewFromList(len(a)) + p := f.Paths + for n := range p { + p[n] = PathEnd{From: -1, Len: 1} + } + dist := make([]float64, len(a)) + for _ = range a { + imp := false + for from, nbs := range a { + fp := &p[from] + d1 := dist[from] + for _, nb := range nbs { + d2 := d1 + w(nb.Label) + to := &p[nb.To] + if fp.Len > 0 && d2 < dist[nb.To] { + *to = PathEnd{From: NI(from), Len: fp.Len + 1} + dist[nb.To] = d2 + imp = true + } + } + } + if !imp { + return nil + } + } + var vis Bits +a: + for n := range a { + end := NI(n) + var b Bits + for b.Bit(end) == 0 { + if vis.Bit(end) == 1 { + continue a + } + vis.SetBit(end, 1) + b.SetBit(end, 1) + end = p[end].From + if end < 0 { + continue a + } + } + for b.Bit(end) == 1 { + c = append(c, end) + b.SetBit(end, 0) + end = p[end].From + } + for i, j := 0, len(c)-1; i < j; i, j = i+1, j-1 { + c[i], c[j] = c[j], c[i] + } + return c + } + return nil // no negative cycle +} + +// A NodeVisitor is an argument to some graph traversal methods. +// +// Graph traversal methods call the visitor function for each node visited. +// Argument n is the node being visited. +type NodeVisitor func(n NI) + +// An OkNodeVisitor function is an argument to some graph traversal methods. +// +// Graph traversal methods call the visitor function for each node visited. +// The argument n is the node being visited. If the visitor function +// returns true, the traversal will continue. If the visitor function +// returns false, the traversal will terminate immediately. +type OkNodeVisitor func(n NI) (ok bool) + +// BreadthFirst2 traverses a graph breadth first using a direction +// optimizing algorithm. +// +// The code is experimental and currently seems no faster than the +// conventional breadth first code. +// +// Use AdjacencyList.BreadthFirst instead. +func BreadthFirst2(g, tr AdjacencyList, ma int, start NI, f *FromList, v OkNodeVisitor) int { + if tr == nil { + var d Directed + d, ma = Directed{g}.Transpose() + tr = d.AdjacencyList + } + switch { + case f == nil: + e := NewFromList(len(g)) + f = &e + case f.Paths == nil: + *f = NewFromList(len(g)) + } + if ma <= 0 { + ma = g.ArcSize() + } + rp := f.Paths + level := 1 + rp[start] = PathEnd{Len: level, From: -1} + if !v(start) { + f.MaxLen = level + return -1 + } + nReached := 1 // accumulated for a return value + // the frontier consists of nodes all at the same level + frontier := []NI{start} + mf := len(g[start]) // number of arcs leading out from frontier + ctb := ma / 10 // threshold change from top-down to bottom-up + k14 := 14 * ma / len(g) // 14 * mean degree + cbt := len(g) / k14 // threshold change from bottom-up to top-down + // var fBits, nextb big.Int + fBits := make([]bool, len(g)) + nextb := make([]bool, len(g)) + zBits := make([]bool, len(g)) + for { + // top down step + level++ + var next []NI + for _, n := range frontier { + for _, nb := range g[n] { + if rp[nb].Len == 0 { + rp[nb] = PathEnd{From: n, Len: level} + if !v(nb) { + f.MaxLen = level + return -1 + } + next = append(next, nb) + nReached++ + } + } + } + if len(next) == 0 { + break + } + frontier = next + if mf > ctb { + // switch to bottom up! + } else { + // stick with top down + continue + } + // convert frontier representation + nf := 0 // number of vertices on the frontier + for _, n := range frontier { + // fBits.SetBit(&fBits, n, 1) + fBits[n] = true + nf++ + } + bottomUpLoop: + level++ + nNext := 0 + for n := range tr { + if rp[n].Len == 0 { + for _, nb := range tr[n] { + // if fBits.Bit(nb) == 1 { + if fBits[nb] { + rp[n] = PathEnd{From: nb, Len: level} + if !v(nb) { + f.MaxLen = level + return -1 + } + // nextb.SetBit(&nextb, n, 1) + nextb[n] = true + nReached++ + nNext++ + break + } + } + } + } + if nNext == 0 { + break + } + fBits, nextb = nextb, fBits + // nextb.SetInt64(0) + copy(nextb, zBits) + nf = nNext + if nf < cbt { + // switch back to top down! + } else { + // stick with bottom up + goto bottomUpLoop + } + // convert frontier representation + mf = 0 + frontier = frontier[:0] + for n := range g { + // if fBits.Bit(n) == 1 { + if fBits[n] { + frontier = append(frontier, NI(n)) + mf += len(g[n]) + fBits[n] = false + } + } + // fBits.SetInt64(0) + } + f.MaxLen = level - 1 + return nReached +} + +// DAGMinDistPath finds a single shortest path. +// +// Shortest means minimum sum of arc weights. +// +// Returned is the path and distance as returned by FromList.PathTo. +// +// This is a convenience method. See DAGOptimalPaths for more options. +func (g LabeledDirected) DAGMinDistPath(start, end NI, w WeightFunc) ([]NI, float64, error) { + return g.dagPath(start, end, w, false) +} + +// DAGMaxDistPath finds a single longest path. +// +// Longest means maximum sum of arc weights. +// +// Returned is the path and distance as returned by FromList.PathTo. +// +// This is a convenience method. See DAGOptimalPaths for more options. +func (g LabeledDirected) DAGMaxDistPath(start, end NI, w WeightFunc) ([]NI, float64, error) { + return g.dagPath(start, end, w, true) +} + +func (g LabeledDirected) dagPath(start, end NI, w WeightFunc, longest bool) ([]NI, float64, error) { + o, _ := g.Topological() + if o == nil { + return nil, 0, fmt.Errorf("not a DAG") + } + f, dist, _ := g.DAGOptimalPaths(start, end, o, w, longest) + if f.Paths[end].Len == 0 { + return nil, 0, fmt.Errorf("no path from %d to %d", start, end) + } + return f.PathTo(end, nil), dist[end], nil +} + +// DAGOptimalPaths finds either longest or shortest distance paths in a +// directed acyclic graph. +// +// Path distance is the sum of arc weights on the path. +// Negative arc weights are allowed. +// Where multiple paths exist with the same distance, the path length +// (number of nodes) is used as a tie breaker. +// +// Receiver g must be a directed acyclic graph. Argument o must be either nil +// or a topological ordering of g. If nil, a topologcal ordering is +// computed internally. If longest is true, an optimal path is a longest +// distance path. Otherwise it is a shortest distance path. +// +// Argument start is the start node for paths, end is the end node. If end +// is a valid node number, the method returns as soon as the optimal path +// to end is found. If end is -1, all optimal paths from start are found. +// +// Paths and path distances are encoded in the returned FromList and dist +// slice. The number of nodes reached is returned as nReached. +func (g LabeledDirected) DAGOptimalPaths(start, end NI, ordering []NI, w WeightFunc, longest bool) (f FromList, dist []float64, nReached int) { + a := g.LabeledAdjacencyList + f = NewFromList(len(a)) + dist = make([]float64, len(a)) + if ordering == nil { + ordering, _ = g.Topological() + } + // search ordering for start + o := 0 + for ordering[o] != start { + o++ + } + var fBetter func(cand, ext float64) bool + var iBetter func(cand, ext int) bool + if longest { + fBetter = func(cand, ext float64) bool { return cand > ext } + iBetter = func(cand, ext int) bool { return cand > ext } + } else { + fBetter = func(cand, ext float64) bool { return cand < ext } + iBetter = func(cand, ext int) bool { return cand < ext } + } + p := f.Paths + p[start] = PathEnd{From: -1, Len: 1} + f.MaxLen = 1 + leaves := &f.Leaves + leaves.SetBit(start, 1) + nReached = 1 + for n := start; n != end; n = ordering[o] { + if p[n].Len > 0 && len(a[n]) > 0 { + nDist := dist[n] + candLen := p[n].Len + 1 // len for any candidate arc followed from n + for _, to := range a[n] { + leaves.SetBit(to.To, 1) + candDist := nDist + w(to.Label) + switch { + case p[to.To].Len == 0: // first path to node to.To + nReached++ + case fBetter(candDist, dist[to.To]): // better distance + case candDist == dist[to.To] && iBetter(candLen, p[to.To].Len): // same distance but better path length + default: + continue + } + dist[to.To] = candDist + p[to.To] = PathEnd{From: n, Len: candLen} + if candLen > f.MaxLen { + f.MaxLen = candLen + } + } + leaves.SetBit(n, 0) + } + o++ + if o == len(ordering) { + break + } + } + return +} + +// Dijkstra finds shortest paths by Dijkstra's algorithm. +// +// Shortest means shortest distance where distance is the +// sum of arc weights. Where multiple paths exist with the same distance, +// a path with the minimum number of nodes is returned. +// +// As usual for Dijkstra's algorithm, arc weights must be non-negative. +// Graphs may be directed or undirected. Loops and parallel arcs are +// allowed. +func (g LabeledAdjacencyList) Dijkstra(start, end NI, w WeightFunc) (f FromList, dist []float64, reached int) { + r := make([]tentResult, len(g)) + for i := range r { + r[i].nx = NI(i) + } + f = NewFromList(len(g)) + dist = make([]float64, len(g)) + current := start + rp := f.Paths + rp[current] = PathEnd{Len: 1, From: -1} // path length at start is 1 node + cr := &r[current] + cr.dist = 0 // distance at start is 0. + cr.done = true // mark start done. it skips the heap. + nDone := 1 // accumulated for a return value + var t tent + for current != end { + nextLen := rp[current].Len + 1 + for _, nb := range g[current] { + // d.arcVis++ + hr := &r[nb.To] + if hr.done { + continue // skip nodes already done + } + dist := cr.dist + w(nb.Label) + vl := rp[nb.To].Len + visited := vl > 0 + if visited { + if dist > hr.dist { + continue // distance is worse + } + // tie breaker is a nice touch and doesn't seem to + // impact performance much. + if dist == hr.dist && nextLen >= vl { + continue // distance same, but number of nodes is no better + } + } + // the path through current to this node is shortest so far. + // record new path data for this node and update tentative set. + hr.dist = dist + rp[nb.To].Len = nextLen + rp[nb.To].From = current + if visited { + heap.Fix(&t, hr.fx) + } else { + heap.Push(&t, hr) + } + } + //d.ndVis++ + if len(t) == 0 { + return f, dist, nDone // no more reachable nodes. AllPaths normal return + } + // new current is node with smallest tentative distance + cr = heap.Pop(&t).(*tentResult) + cr.done = true + nDone++ + current = cr.nx + dist[current] = cr.dist // store final distance + } + // normal return for single shortest path search + return f, dist, -1 +} + +// DijkstraPath finds a single shortest path. +// +// Returned is the path and distance as returned by FromList.PathTo. +func (g LabeledAdjacencyList) DijkstraPath(start, end NI, w WeightFunc) ([]NI, float64) { + f, dist, _ := g.Dijkstra(start, end, w) + return f.PathTo(end, nil), dist[end] +} + +// tent implements container/heap +func (t tent) Len() int { return len(t) } +func (t tent) Less(i, j int) bool { return t[i].dist < t[j].dist } +func (t tent) Swap(i, j int) { + t[i], t[j] = t[j], t[i] + t[i].fx = i + t[j].fx = j +} +func (s *tent) Push(x interface{}) { + nd := x.(*tentResult) + nd.fx = len(*s) + *s = append(*s, nd) +} +func (s *tent) Pop() interface{} { + t := *s + last := len(t) - 1 + *s = t[:last] + return t[last] +} + +type tentResult struct { + dist float64 // tentative distance, sum of arc weights + nx NI // slice index, "node id" + fx int // heap.Fix index + done bool +} + +type tent []*tentResult |
