1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
|
# This file contains the definition of the completers used for the Vomnibox's suggestion UI. A completer will
# take a query (whatever the user typed into the Vomnibox) and return a list of Suggestions, e.g. bookmarks,
# domains, URLs from history.
#
# The Vomnibox frontend script makes a "filterCompleter" request to the background page, which in turn calls
# filter() on each these completers.
#
# A completer is a class which has two functions:
# - filter(query, onComplete): "query" will be whatever the user typed into the Vomnibox.
# - refresh(): (optional) refreshes the completer's data source (e.g. refetches the list of bookmarks).
# A Suggestion is a bookmark or history entry which matches the current query.
# It also has an attached "computeRelevancyFunction" which determines how well this item matches the given
# query terms.
class Suggestion
showRelevancy: false # Set this to true to render relevancy when debugging the ranking scores.
# - type: one of [bookmark, history, tab].
# - computeRelevancyFunction: a function which takes a Suggestion and returns a relevancy score
# between [0, 1]
# - extraRelevancyData: data (like the History item itself) which may be used by the relevancy function.
constructor: (@queryTerms, @type, @url, @title, @computeRelevancyFunction, @extraRelevancyData) ->
@title ||= ""
computeRelevancy: -> @relevancy = @computeRelevancyFunction(this)
generateHtml: ->
return @html if @html
relevancyHtml = if @showRelevancy then "<span class='relevancy'>#{@computeRelevancy()}</span>" else ""
# NOTE(philc): We're using these vimium-specific class names so we don't collide with the page's CSS.
@html =
"<div class='vimiumReset vomnibarTopHalf'>
<span class='vimiumReset vomnibarSource'>#{@type}</span>
<span class='vimiumReset vomnibarTitle'>#{@highlightTerms(Utils.escapeHtml(@title))}</span>
</div>
<div class='vimiumReset vomnibarBottomHalf'>
<span class='vimiumReset vomnibarUrl'>#{@shortenUrl(@highlightTerms(@url))}</span>
#{relevancyHtml}
</div>"
shortenUrl: (url) -> @stripTrailingSlash(url).replace(/^http:\/\//, "")
stripTrailingSlash: (url) ->
url = url.substring(url, url.length - 1) if url[url.length - 1] == "/"
url
# Wraps each occurence of the query terms in the given string in a <span>.
highlightTerms: (string) ->
ranges = []
for term in @queryTerms
i = string.search(RegexpCache.get(term))
ranges.push([i, i + term.length]) if i >= 0
return string if ranges.length == 0
ranges = @mergeRanges(ranges.sort (a, b) -> a[0] - b[0])
# Replace portions of the string from right to left.
ranges = ranges.sort (a, b) -> b[0] - a[0]
for [start, end] in ranges
string =
string.substring(0, start) +
"<span class='vomnibarMatch'>" + string.substring(start, end) + "</span>" +
string.substring(end)
string
# Merges the given list of ranges such that any overlapping regions are combined. E.g.
# mergeRanges([0, 4], [3, 6]) => [0, 6]. A range is [startIndex, endIndex].
mergeRanges: (ranges) ->
previous = ranges.shift()
mergedRanges = [previous]
ranges.forEach (range) ->
if previous[1] >= range[0]
previous[1] = Math.max(range[1], previous[1])
else
mergedRanges.push(range)
previous = range
mergedRanges
class BookmarkCompleter
currentSearch: null
# These bookmarks are loaded asynchronously when refresh() is called.
bookmarks: null
filter: (@queryTerms, @onComplete) ->
@currentSearch = { queryTerms: @queryTerms, onComplete: @onComplete }
@performSearch() if @bookmarks
onBookmarksLoaded: -> @performSearch() if @currentSearch
performSearch: ->
results = @bookmarks.filter (bookmark) =>
RankingUtils.matches(@currentSearch.queryTerms, bookmark.url, bookmark.title)
suggestions = results.map (bookmark) =>
new Suggestion(@currentSearch.queryTerms, "bookmark", bookmark.url, bookmark.title, @computeRelevancy)
onComplete = @currentSearch.onComplete
@currentSearch = null
onComplete(suggestions)
refresh: ->
@bookmarks = null
chrome.bookmarks.getTree (bookmarks) =>
@bookmarks = @traverseBookmarks(bookmarks).filter((bookmark) -> bookmark.url?)
@onBookmarksLoaded()
# Traverses the bookmark hierarchy, and retuns a flattened list of all bookmarks in the tree.
traverseBookmarks: (bookmarks) ->
results = []
toVisit = bookmarks
while toVisit.length > 0
bookmark = toVisit.shift()
results.push(bookmark)
toVisit.push.apply(toVisit, bookmark.children) if (bookmark.children)
results
computeRelevancy: (suggestion) ->
RankingUtils.wordRelevancy(suggestion.queryTerms, suggestion.url, suggestion.title)
class HistoryCompleter
filter: (queryTerms, onComplete) ->
@currentSearch = { queryTerms: @queryTerms, onComplete: @onComplete }
results = []
HistoryCache.use (history) =>
results = history.filter (entry) -> RankingUtils.matches(queryTerms, entry.url, entry.title)
suggestions = results.map (entry) =>
new Suggestion(queryTerms, "history", entry.url, entry.title, @computeRelevancy, entry)
onComplete(suggestions)
computeRelevancy: (suggestion) ->
historyEntry = suggestion.extraRelevancyData
recencyScore = RankingUtils.recencyScore(historyEntry.lastVisitTime)
wordRelevancy = RankingUtils.wordRelevancy(suggestion.queryTerms, suggestion.url, suggestion.title)
# Average out the word score and the recency. Recency has the ability to pull the score up, but not down.
score = (wordRelevancy + Math.max(recencyScore, wordRelevancy)) / 2
refresh: ->
# The domain completer is designed to match a single-word query which looks like it is a domain. This supports
# the user experience where they quickly type a partial domain, hit tab -> enter, and expect to arrive there.
class DomainCompleter
domains: null # A map of domain -> history
filter: (queryTerms, onComplete) ->
return onComplete([]) if queryTerms.length > 1
if @domains
@performSearch(queryTerms, onComplete)
else
@populateDomains => @performSearch(queryTerms, onComplete)
performSearch: (queryTerms, onComplete) ->
query = queryTerms[0]
domainCandidates = (domain for domain of @domains when domain.indexOf(query) >= 0)
domains = @sortDomainsByRelevancy(queryTerms, domainCandidates)
return onComplete([]) if domains.length == 0
topDomain = domains[0][0]
onComplete([new Suggestion(queryTerms, "domain", topDomain, null, @computeRelevancy)])
# Returns a list of domains of the form: [ [domain, relevancy], ... ]
sortDomainsByRelevancy: (queryTerms, domainCandidates) ->
results = []
for domain in domainCandidates
recencyScore = RankingUtils.recencyScore(@domains[domain].lastVisitTime || 0)
wordRelevancy = RankingUtils.wordRelevancy(queryTerms, domain, null)
score = wordRelevancy + Math.max(recencyScore, wordRelevancy) / 2
results.push([domain, score])
results.sort (a, b) -> b[1] - a[1]
results
populateDomains: (onComplete) ->
HistoryCache.use (history) =>
@domains = {}
history.forEach (entry) =>
# We want each key in our domains hash to point to the most recent History entry for that domain.
domain = @parseDomain(entry.url)
if domain
previousEntry = @domains[domain]
@domains[domain] = entry if !previousEntry || (previousEntry.lastVisitTime < entry.lastVisitTime)
chrome.history.onVisited.addListener(@onPageVisited.bind(this))
onComplete()
onPageVisited: (newPage) ->
domain = @parseDomain(newPage.url)
@domains[domain] = newPage if domain
parseDomain: (url) -> url.split("/")[2] || ""
# Suggestions from the Domain completer have the maximum relevancy. They should be shown first in the list.
computeRelevancy: -> 1
# Searches through all open tabs, matching on title and URL.
class TabCompleter
filter: (queryTerms, onComplete) ->
# NOTE(philc): We search all tabs, not just those in the current window. I'm not sure if this is the
# correct UX.
chrome.tabs.query {}, (tabs) =>
results = tabs.filter (tab) -> RankingUtils.matches(queryTerms, tab.url, tab.title)
suggestions = results.map (tab) =>
suggestion = new Suggestion(queryTerms, "tab", tab.url, tab.title, @computeRelevancy)
suggestion.tabId = tab.id
suggestion
onComplete(suggestions)
computeRelevancy: (suggestion) ->
RankingUtils.wordRelevancy(suggestion.queryTerms, suggestion.url, suggestion.title)
# A completer which calls filter() on many completers, aggregates the results, ranks them, and returns the top
# 10. Queries from the vomnibar frontend script come through a multi completer.
class MultiCompleter
constructor: (@completers) -> @maxResults = 10
refresh: -> completer.refresh() for completer in @completers when completer.refresh
filter: (queryTerms, onComplete) ->
# Allow only one query to run at a time.
if @filterInProgress
@mostRecentQuery = { queryTerms: queryTerms, onComplete: onComplete }
return
RegexpCache.clear()
@mostRecentQuery = null
@filterInProgress = true
suggestions = []
completersFinished = 0
for completer in @completers
# Call filter() on every source completer and wait for them all to finish before returning results.
completer.filter queryTerms, (newSuggestions) =>
suggestions = suggestions.concat(newSuggestions)
completersFinished += 1
if completersFinished >= @completers.length
results = @sortSuggestions(suggestions)[0...@maxResults]
result.generateHtml() for result in results
onComplete(results)
@filterInProgress = false
@filter(@mostRecentQuery.queryTerms, @mostRecentQuery.onComplete) if @mostRecentQuery
sortSuggestions: (suggestions) ->
suggestion.computeRelevancy(@queryTerms) for suggestion in suggestions
suggestions.sort (a, b) -> b.relevancy - a.relevancy
suggestions
# Utilities which help us compute a relevancy score for a given item.
RankingUtils =
# Whether the given URL or title match any one of the query terms. This is used to prune out irrelevant
# suggestions before we try to rank them.
matches: (queryTerms, url, title) ->
return false if queryTerms.length == 0
for term in queryTerms
regexp = RegexpCache.get(term)
return false unless title.match(regexp) || url.match(regexp)
true
# Returns a number between [0, 1] indicating how often the query terms appear in the url and title.
wordRelevancy: (queryTerms, url, title) ->
queryLength = 0
urlScore = 0.0
titleScore = 0.0
for term in queryTerms
queryLength += term.length
urlScore += 1 if url.indexOf(term) >= 0
titleScore += 1 if title && title.indexOf(term) >= 0
urlScore = urlScore / queryTerms.length
urlScore = urlScore * RankingUtils.normalizeDifference(queryLength, url.length)
if title
titleScore = titleScore / queryTerms.length
titleScore = titleScore * RankingUtils.normalizeDifference(queryLength, title.length)
else
titleScore = urlScore
(urlScore + titleScore) / 2
# Returns a score between [0, 1] which indicates how recent the given timestamp is. Items which are over
# a month old are counted as 0. This range is quadratic, so an item from one day ago has a much stronger
# score than an item from two days ago.
recencyScore: (lastAccessedTime) ->
@oneMonthAgo ||= 1000 * 60 * 60 * 24 * 30
recency = Date.now() - lastAccessedTime
recencyDifference = Math.max(0, @oneMonthAgo - recency) / @oneMonthAgo
# recencyScore is between [0, 1]. It is 1 when recenyDifference is 0. This quadratic equation will
# incresingly discount older history entries.
recencyScore = recencyDifference * recencyDifference * recencyDifference
# Takes the difference of two numbers and returns a number between [0, 1] (the percentage difference).
normalizeDifference: (a, b) ->
max = Math.max(a, b)
(max - Math.abs(a - b)) / max
# We cache regexps because we use them frequently when comparing a query to history entries and bookmarks,
# and we don't want to create fresh objects for every comparison.
RegexpCache =
init: ->
@initialized = true
@clear()
# Taken from http://stackoverflow.com/questions/3446170/escape-string-for-use-in-javascript-regex
@escapeRegExp ||= /[\-\[\]\/\{\}\(\)\*\+\?\.\\\^\$\|]/g
clear: -> @cache = {}
get: (string) ->
@init() unless @initialized
@cache[string] ||= @escapeRegexp(string)
# Creates a Regexp from the given string, with all special Regexp characters escaped.
escapeRegexp: (string) -> new RegExp(string.replace(@escapeRegExp, "\\$&"), "i")
# Provides cached access to Chrome's history. As the user browses to new pages, we add those pages to this
# history cache.
HistoryCache =
size: 20000
history: null # An array of History items returned from Chrome.
reset: ->
@history = null
@callbacks = null
use: (callback) ->
return @fetchHistory(callback) unless @history?
callback(@history)
fetchHistory: (callback) ->
return @callbacks.push(callback) if @callbacks
@callbacks = [callback]
chrome.history.search { text: "", maxResults: @size, startTime: 0 }, (history) =>
history.sort @compareHistoryByUrl
@history = history
chrome.history.onVisited.addListener(@onPageVisited.bind(this))
callback(@history) for callback in @callbacks
@callbacks = null
compareHistoryByUrl: (a, b) ->
return 0 if a.url == b.url
return 1 if a.url > b.url
-1
# When a page we've seen before has been visited again, be sure to replace our History item so it has the
# correct "lastVisitTime". That's crucial for ranking Vomnibar suggestions.
onPageVisited: (newPage) ->
i = HistoryCache.binarySearch(newPage, @history, @compareHistoryByUrl)
pageWasFound = (@history[i].url == newPage.url)
if pageWasFound
@history[i] = newPage
else
@history.splice(i, 0, newPage)
# Returns the matching index or the closest matching index if the element is not found. That means you
# must check the element at the returned index to know whether the element was actually found.
# This method is used for quickly searching through our history cache.
HistoryCache.binarySearch = (targetElement, array, compareFunction) ->
high = array.length - 1
low = 0
while (low <= high)
middle = Math.floor((low + high) / 2)
element = array[middle]
compareResult = compareFunction(element, targetElement)
if (compareResult > 0)
high = middle - 1
else if (compareResult < 0)
low = middle + 1
else
return middle
# We didn't find the element. Return the position where it should be in this array.
return if compareFunction(element, targetElement) < 0 then middle + 1 else middle
root = exports ? window
root.Suggestion = Suggestion
root.BookmarkCompleter = BookmarkCompleter
root.MultiCompleter = MultiCompleter
root.HistoryCompleter = HistoryCompleter
root.DomainCompleter = DomainCompleter
root.TabCompleter = TabCompleter
root.HistoryCache = HistoryCache
root.RankingUtils = RankingUtils
|